

Straight to the Facts: Learning Knowledge Base Retrieval for Factual Visual Question Answering

Medhini Narasimhan, Alexander Schwing

Introduction

- Motivation. To answer open ended questions about an image using facts from an external knowledge base while handling synonyms and homographs. Answering a question correctly involves retrieving the right supporting fact and extracting the answer from it.
- FVQA Dataset. 2,190 images, 5,286 questions, and 4,126 unique facts corresponding to the questions.
- FVQA Knowledge Base. 193,449 facts, constructed by extracting the top visual concepts for all the images in the dataset and querying for those concepts in the three knowledge bases - WebChild, ConceptNet, and DBPedia.

Learning Knowledge Base Retrieval

(Visual Concept, Relation, Attribute)

Inference

1. Image, Question, and Visual Concept Embedding

- Image: Low-level fc7 features extracted from a ResNet-152 model pre-trained on ImageNet
- Question: Embedding of dimension 100 learned using LSTM A
- Visual Concepts: Objects, scenes, and actions detected using pre-trained models
- Fusion: Image, question, and visual concept features are combined using an MLP to form a 200d vector

2. Fact Embedding

- Fact consists of (visual concept, relation, attribute), e.g., (Orange, IsA, Fruit)
- One relation out of 13 possible is obtained from the question by using an LSTM B
- Fact space reduced by filtering according to the predicted relation, e.g., IsA
- Fact is encoded using 100d GloVe embeddings

3. Scoring the facts

- Facts are scored by computing the cosine distance between the output of the MLP and the fact embeddings
- Fact with highest score is chosen

4. Answer from fact

- The answer is either the visual concept or the attribute within the chosen fact
- Answer source is predicted from the question using an LSTM C

Learning

1. Predicting the Relation and Answer Source

- The LSTM B is trained using ground truth question-relation pairs and standard cross-entropy loss
- The LSTM C is trained using ground truth question-answer source pairs and binary cross-entropy loss

2. Scoring the facts

- The score function is trained in multiple time steps by mining hard negatives in each step. Every iteration consists of the ground truth fact and 99 negatives
- The parameters are learned using a classical margin loss that assigns the highest score to the image-question-ground truth fact embedding
- The LSTM A, the MLP, and the score function are trained end-to-end

Quantitative Results

	Relation Prediction		Answer Source Prediction		
Method	Accuracy @1	Accuracy @3	Accuracy @1	Accuracy @3	
FVQA	64.94	82.42	_	_	FVQA
Ours	75.40	91.97	97.30	100.00	FVQA

Method	Synonyms (FVQA)	Synonyms (Ours)	Homographs (FVQA)	
FVQA	78	61	66.3	
Ours	91.6	89	79.4	

	Fact Prediction		Answer Prediction	
Method	Accuracy @1	Accuracy @3	Accuracy @1	Accuracy @3
FVQA	38.76	42.96	56.91	64.65
FVQA Ensemble	1	1	58.76	
Ours – Q + I	28.98	32.34	26.68	30.27
Ours – Q + I + VC	62.30	74.90	60.30	73.10
Ours – Q + VC	64.50	75.20	62.20	75.60

Qualitative Results

Correctly Answered Questions

Predicted Relation: UsedFor **Predicted Supporting Fact:** (Bookshelf, UsedFor, Carrying Books) Predicted Answer Source: KB **Predicted Answer: Carrying books GT** Answer: Carrying books

- **Predicted Relation:** CapableOf **Predicted Supporting Fact:** (Frisbee, CapableOf, Flying)
- **Predicted Answer: Frisbee**
- **Predicted Answer Source: Imag GT** Answer: Frisbee

Question: Which property does the place in the

- Predicted Relation: HasProperty **Predicted Supporting Fact:** (Beach, HasProperty, Sandy) Predicted Answer Source: KB
- **Predicted Answer: Sandy** GT Answer: Sandy

is capable of floating on water? Question(Synonymous): Which vehicle shown

Predicted Relation: CapableOf **Predicted Supporting Fact:** (Boats, CapableOf, Floating on water) Predicted Answer Source: Image Predicted Answer: Boat GT Answer: Boat

Correctly Answered Synonymous Questions

this image is used to measure the Question(Synonymous): What in this

image can tell time? Predicted Relation: UsedFor **Predicted Supporting Fact:** (Clock, UsedFor, measure the passage

Predicted Answer: Clock

GT Answer: Clock

Predicted Answer Source: Image

Question(Synonymous): Which object in this Predicted Relation: RelatedTo **Predicted Supporting Fact:** (Sheep, RelatedTo, Wool)

Predicted Answer Source: Image Predicted Answer: GT Answer: Sheep

practice in this place?

Predicted Relation: AtLocation **Predicted Supporting Fact:** (Skiing, AtLocation, Ski-slope) Predicted Answer Source: KB Predicted Answer: Skiing GT Answer: Skiing

used to make a cake? Predicted Relation: UsedFor **Predicted Supporting Fact:**

(Oven, UsedFor, Baking) **Predicted Answer Source: Image** Predicted Answer: Over **GT** Answer: Oven

this image is related to sailing? Predicted Relation: Related To **Predicted Supporting Fact:** (Boat, RelatedTo, Sail) Predicted Answer Source: Image

Predicted Answer: Boat **GT Answer**: Boat **GT Answer**: Saxophone

image is common in jazz? Question(Synonymous): Which musical instrument is shown here? **Predicted Supporting Fact:** (Saxophone, IsA, Jazz instrument (Lamp, UsedFor, Lighting) Predicted Answer Source: Image Predicted Answer: Saxophone Predicted Answer: L

Question(Synonymous): Which object in this image do you need in a dark room? **Predicted Supporting Fact: Predicted Answer Source:** Image GT Answer: Lamp

Incorrectly Answered Questions

preys on a mouse? Predicted Relation: CapableOf **Predicted Supporting Fact:** (Cat, CapableOf, Killing a mouse **Predicted Answer Source: Image** Predicted Answer: Cat GT Answer: Cat

Visual Concepts Prediction and Retrieved Facts

Which object are you likely to find in a monkey's hand?

Top-3 Retrieved Facts: (Banana's, AtLocation, Grocery store) (Cup, AtLocation. Kitchen)

Predicted Relation: AtLocation

Question: Which object in this image is considered to be a shelter?

Predicted Relation: IsA

Top-3 Retrieved Facts (Car, IsA, Heavier Than Horse)

GT Supporting Fact: (TennisBall, HasProperty, Round)

Predicted Answer Source: Imag

strenuous than the action in the image $\hat{}$ **Predicted Relation:** Comparative Predicted Supporting Fact: (Jumping, Comparative-more strenuous

Predicted Answer Source: Image **GT Answer Source:** KB Predicted Answer: Jumping

Predicted Relation: Is/ **GT Relation:** Category

Predicted Supporting Fact: (Lemon, isA, Frui **GT Supporting Fact:** (Fruits, Category, Food)

Predicted Answer Source: Image Predicted Answer: Lemon GT Answer: Fruits

Follow Up: Upcoming NIPS Paper

Out of the Box: Reasoning with Graph Convolution Networks for Factual Visual Question Answering